当前位置: 主页 > 行业资讯 > 大数据培训 > 如何学习大数据?大数据专业知识是什么

如何学习大数据?大数据专业知识是什么

2018-03-30 18:24:19 作者:光环大数据 栏目:未知

光环大数据作为国内知名的高端IT就业培训机构,多年来培养无数高薪人才!为了让更多人了解大数据、人工智能、数据分析、python等相关技能,光环大数据免费提供学习视频、2周免费跟班试听课程,如有需要,可点击留言

  如何学习大数据?大数据专业知识是什么?大数据平台是为了计算,现今社会所产生的越来越大的数据量。以存储、运算、展现作为目的的平台。大数据技术是指从各种各样类型的数据中,快速获得有价值信息的能力。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。

大数据专业知识是什么

大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。(在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据的方法[2])大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。

目前,商业智能通常被理解为将企业中现有的数据转化为知识,帮助企业做出明智的业务经营决策的工具。这里所谈的数据包括来自企业业务系统的订单、库存、交易账目、客户和供应商资料及来自企业所处行业和竞争对手的数据,以及来自企业所处的其他外部环境中的各种数据。而商业智能能够辅助的业务经营决策既可以是作业层的,也可以是管理层和策略层的决策。

如何学习大数据

(1)大数据学习要业务驱动,不要技术驱动:数据科学的核心能力是解决问题。

大数据的核心目标是数据驱动的智能化,要解决具体的问题,不管是科学研究问题,还是商业决策问题,抑或是政府管理问题。所以学习之前要明确问题,理解问题,所谓问题导向、目标导向,这个明确之后再研究和选择合适的技术加以应用,这样才有针对性,言必hadoop,spark的大数据分析是不严谨的。

不同的业务领域需要不同方向理论、技术和工具的支持。如文本、网页要自然语言建模,随时间变化数据流需要序列建模,图像音频和视频多是时空混合建模;大数据处理如采集需要爬虫、倒入导出和预处理等支持,存储需要分布式云存储、云计算资源管理等支持,计算需要分类、预测、描述等模型支持,应用需要可视化、知识库、决策评价等支持。所以是业务决定技术,而不是根据技术来考虑业务,这是大数据学习要避免的第一个误区。

(2)大数据学习要善用开源,不要重复造轮子:数据科学的技术基因在于开源。IT前沿领域的开源化已成不可逆转的趋势,Android开源让智能手机平民化,让我们跨入了移动互联网时代,智能硬件开源将带领跨入物联网时代,以Hadoop和Spark为代表的大数据开源生态加速了去IOE(IBM、ORACLE、EMC)进程,倒逼传统IT巨头拥抱开源,谷歌和OpenAI联盟的深度学习开源(以Tensorflow,Torch,Caffe等为代表)正在加速人工智能技术的发展。

数据科学的标配语言R和Python更是因开源而生,因开源而繁荣,诺基亚因没把握开源大势而衰落。为什么要开源,这得益于IT发展的工业化和构件化,各大领域的基础技术栈和工具库已经很成熟,下一阶段就是怎么快速组合、快速搭积木、快速产出的问题,不管是linux,anroid还是tensorflow,其基础构件库基本就是利用已有开源库,结合新的技术方法实现,组合构建而成,很少在重复造轮子。

另外,开源这种众包开发模式,是一种集体智慧编程的体现,一个公司无法积聚全球工程师的开发智力,而一个GitHub上的明星开源项目可以,所以要善用开源和集体智慧编程,而不要重复造轮子,这是大数据学习要避免的第二个误区。

所以,大数据学习一定要清楚我是在做数据科学还是数据工程,各需要哪些方面的技术能力,现在处于哪一个阶段等,不然为了技术而技术,是难以学好和用好大数据的。


光环大数据作为国内知名的高端IT就业培训机构,多年来培养无数高薪人才!为了让更多人了解大数据、人工智能、数据分析、python等相关技能,光环大数据免费提供学习视频、2周免费跟班试听课程,如有需要,可点击留言
Tags标签 大数据培训

领取资料

X
立即免费领取

请准确填写您的信息

点击领取